Onderwerp: Bezoek-historie

MSC/Circ.1166 - Guidelines For A Simplified Evacuation Analysis For High-Speed Passenger Craft
Geldigheid:27-06-2005 t/m Versie:vergelijk Status: Geldig vandaag

Dit onderwerp bevat de volgende rubrieken.

 

Ref. T4/4.01                                                                                                               MSC/Circ.1166

 

    

                                                                                                                                  

27 June 2005

 

                  

 

 

1          The   Maritime   Safety   Committee,   at   its   seventy-third   session   (27   November   to 6 December 2000),  adopted,  by  resolution  MSC.97(73),  the  International  Code  of  Safety  for High-SpeedCraft,2000(2000 HSCCode)whichenteredintoforceon1July2002.   ThisCode requiresinsection4.8.2that `anevacuationprocedure,includinganevacuationanalysiscarriedout taking  into  account  the  guidelines  developed  by  the  Organization  shall  be  developed  for  the informationoftheAdministrationinconnectionwiththeapprovaloffireinsulationplansandfor assistingtheownersandbuildersinplanningtheevacuationdemonstrationrequiredin4.8.3îofthe Code.

 

 

2          The  Committee,  at  its  seventy-fourth  session  (30  May  to  8  June  2001),  noting  that computerizedsimulationsystemsarestillunderdevelopment,decidedthatasimplifiedevacuation analysismethodwasneededintheinterimand,havingconsideredaproposalbytheforty-fifth sessionoftheSub-CommitteeonFireProtection,approvedInterimGuidelinesforasimplified evacuationanalysisofhigh-speedpassengercraftandinvitedMemberGovernmentstoapplythe InterimGuidelineswhenimplementingtherequirementsofsection4.8.2ofthe2000HSCCode,and to  submit  to  the  Sub-Committee  on  Fire  Protection  information  on  experience  gained  in  their implementation.

 

 

3          TheCommittee,atitseightiethsession(11to20May2005),afterhavingconsidereda proposalbytheforty-ninthsessionoftheSub-CommitteeonFireProtectionmadeinlightofthe experienced  gained  in  the  application  of  the  aforementioned  Interim  Guidelines,  approved  the Guidelinesforasimplifiedevacuationanalysisofhigh-speedpassengercraft,togetherwiththe worked example appended thereto, as set out in the annex.

 

 

4          MemberGovernmentsareinvitedtoapplytheannexedGuidelineswhenimplementingthe requirements  of  section  4.8.2  of  the  2000  HSC  Code  and  bring  them  to  the  attention  of  craft designers,craftownersandotherpartiesinvolvedinthedesign,constructionandoperationof high-speed passenger craft.

 

 

5          This circular supersedes MSC/Circ.1001.

 

 

 

 

***

 

 

Annex

1 General

 

1.1 In addition to the relevant requirements for means of escape, escape routes in high-speed passenger craft are required to be evaluated by an evacuation analysis early in the design process, under the International Code of Safety for High-Speed Craft, 2000 (2000 HSC Code), section 4.8.2.

1.2 The purpose of these Guidelines is to provide guidance on how to execute a simplified (hydraulic) evacuation analysis and use its results to plan the evacuation demonstration required in section 4.8.5 of the 2000 HSC Code.

2 Definitions

 

2.1 Ideal deployment time (tM) is the time needed for the preparation and launching of the marine evacuation system (MES) and the first survival craft in calm water.

2.2 Ideal travel time (tI) is the time needed for the slowest group of people to reach the embarkation point in calm water. Unless otherwise stated in the evacuation procedure, the number of people of the slowest group should be assumed equal to the capacity of the largest survival craft onboard. For the purpose of these Guidelines, tI is assumed to run concurrently with tM.

2.3 Ideal embarkation time (tE) is the time needed for all passengers and crew to board the survival craft from the starting situation described in 4.8.7.1 of the Code.

2.4 Structural fire protection time (SFP) is the protection time for areas of major fire risk as defined in section 4.8.1 of the 2000 HSC Code.

2.5 Slowest group of people is the group of evacuating persons for which the highest travel time is obtained from calculations according to paragraph 3.6.3.3.

3 Method Of Evaluation

 

The steps in the evacuation analysis are:

 

 

3.1       Description of the system

 

 

.1         Identification of assembly stations.

 

 

.2         Identification of embarkation stations, MES and survival craft.

 

 

.3         Description of the evacuation procedure including the role of the crew.

 

 

.4         Identification of groups and their escape route.          

 

 

 

 

3.2       Assumptions

 

 

Thismethodforestimatingevacuationtimeisbasicinnatureand,therefore,commonevacuation analysis assumptions should be made as follows:

 

 

.1         passengers  and  crew  should  carry  out  the  evacuation  in  a  sequence  of  groups according to the evacuation procedure;

 

 

.2         passengers and crew will evacuate via the primary escape route;

 

 

.3         walkingspeeddependsonthetypeofescapefacility,assumingthattheflowisonly

 

in the direction of the escape route, and that there is no overtaking;

 

 

.4         passengers'disabilitiesormedicalconditionsthatwillseverelyhampertheirability

 

to keep up with the flow are neglected (see paragraph 3.2.8.1 below);

 

 

.5         passenger load is assumed to be 100% (full load);

 

 

.6         full availability ofescape arrangements is considered;

 

 

.7         people can move unhindered;

 

 

.8         theallowableevacuationtimeaspersection4.8.1ofthe2000HSCCodeisgiven by SFP - 7 (min), where:

 

                                                                                                                           3

 

 

         .8.1                  divisionby3accountsforthesafetyfactor,whichincludespassengers'ages anddisabilities,restrictedvisibilityduetosmoke,effectsofwavesandcraft motionsondeployment,travelandembarkationtimeandofviolationstothe evacuation procedure;

 

 

         .8.2                  subtractionof7minaccountsforinitialdetectionandextinguishingaction (section 4.8.1 of the 2000 HSC Code); and

 

 

        .8.3                  for  category  B  craft,  the  passenger  awareness  time,  the  time  needed  for passengers  to  reach  assembly  stations  and  the  time  needed  for  manning emergencystationsisincludedinthe7mintime(seesection4.8ofthe2000

 

HSC Code);

 

 

.9         astheevacuationprocedureisdesignedtocarryoutevacuationundercontrolled conditions (section 4.8.1 of the 2000 HSC Code), no counter flow takes place; and

 

 

.10       whenusingtable3.6itisassumedthatatthebeginningoftheevacuation,passengers are located at a distance not greater than two decks fromthe embarkation station.    

 

 

 

 

 

3.3       Scenarios to be considered

 

 

3.3.1    ForthepurposeofcalculatingtheevacuationtimeincategoryAcraft,passengersshouldbe assumed   to   be   distributed   in   a   normal   voyage   configuration   (section   4.8.4.1   of   the 2000 HSC Code).

 

 

3.3.2    ForthepurposeofcalculatingtheevacuationtimeincategoryBcraft,passengersandthe crewshouldbeassumedtobedistributedamongassemblystationsandbereadyforembarkation (section 4.8.4.2 of the 2000 HSC Code).

 

 

3.4       Performance standards

 

 

3.4.1    Thefollowingtwoperformancestandardsshouldbecompliedwithforcalculatingtheoverall evacuation time:

 

 

tM + tE <  SFP - 7                                 (3.4.1.1)

 

3

 

tI + tE <  SFP - 7                                   (3.4.1.2)

 

3

 

 

3.4.2    Both performance standards are derived fromsection 4.8.1 of the 2000HSC Code.

 

 

3.5       Calculation of tE and tM

 

 

3.5.1    ThevaluesoftE andtM shouldbecalculatedseparatelybasedonanappropriatecombination of  the  following  documented  and  independently  witnessed  trials  as  is  acceptable  to  the Administration but which may be subject to verification trials:

 

 

.1         type approval trials1  for any inflatable liferafts and marine evacuation systems used for the evacuation of the craft, the relevant deployment and embarkation times being increased by factors of 1.3 and 1.14, respectively; and

 

 

.2         full scale shipboard trials on closely similar craft and evacuation systems.

 

 

3.5.2    Safetyfactorson tE and tM areaccountedforbydividingby3inperformancestandards formulae (3.4.1.1) and (3.4.1.2).

 

 

3.6       Calculation of tI

 

 

 

3.6.1    Parameters to be considered:

 

 

.1         clear width, Wc , is:

 

 

.1         measured off the handrail(s) for corridors and stairways;

 

 

.2         the actual passage width of a door in its fully open position;

 

 

 

 

.3         the space between the fixed seats for aisles in public spaces; and

 

 

.4         thespacebetweenthemostintrudingportionsoftheseats(whenunoccupied)

 

in a row of seats in public spaces;

 

 

.2         speedofpersons,S(m/s)isthespeedofevacueesalongtheescaperoute(table3.6

 

provides the values of S which should be used for the analysis);

 

 

.3         specificflowofpersons,Fs  (p/(m/s)),isthenumberofevacuatingpersonspasta pointin theescaperouteperunittimeperunitofclearwidthWc (table3.6provides the values of Fs  which should be used for the analysis).

 

 

                                                                

Table3.6*

 

 

 

Type of facility

 

Speed of persons S

 

(m/s)

 

Specific flow  Fs

 

(p/(m/s))

 

Stairs (down)

 

0.55

 

1.1

 

Stairs (up)

 

0.44

 

0.88

 

Corridors, doorways

 

0.67

 

1.3

 

 

 

.4         calculatedflowofpersons,Fc  (p/s),isthepredictednumberofpersonspassinga

 

particular point in an escape route per unit time.  It is obtained from:

 

 

Fc = Fs  ¿Wc                              (3.6.1.4)

 

 

.5         flowtime, tF  (s),isthetotaltimeneededforagroupofNpersonstomovepasta point in the egress system.  It is calculated as:

 

 

tF  = N / Fc                                 (3.6.1.5)

 

 

.6        walking  time, tw (s),  is  the  total  time  needed  for  a  person  to  cover  the  distance between the assembly station and the embarkation station.

 

 

3.6.2   Transitions

 

 

Transitionsarethosepointsintheegresssystemwherethetypeofaroutechanges(e.g.froma corridor to a stairway) where routes merge or branch out.

 

 

3.6.3    Procedure for calculation of tI  is as follows:

 

 

 

.1         Groups of people:

 

 

Forthepurposesofevacuation,thetotalnumberofpersonsonboardisbrokendown intooneormoregroupsofpeople.  Itshouldbeassumedthatallpersonsinagroup carryouttheevacuationatthesametime,alongthesamerouteandtowardsthesame embarkationstation.Thenumberofpersonsineachgroup,thenumberofgroupsand theembarkationstationassignedtoeachgroupshouldbeinaccordancewiththe evacuation procedure.

 

 

.2         Schematic representation:

 

 

Theescaperoutesfromassemblystationstoembarkationstationsarerepresentedasa hydraulicnetwork,wherethepipesarethecorridorsandstairways,thevalvesarethe doors and restrictions in general.

 

 

.3         For each foreseen group of people:

 

 

.1         Thewalkingtime,tw,iscalculatedbyusingthespeedofpersonsspecifiedin table3.6andthedistancebetweenthepertinentassemblyandembarkation stations.

 

 

.2         Theflowtime,tF,ofeachportionoftheescaperouteiscalculatedusingthe specificflowFs fromtable3.6andtheappropriateclearwidthofthatportion

 

of escape route.  The total flow time is the largest value obtained.

 

 

.3         Thetraveltimeisobtainedasthesumofthewalkingtimeandthetotal flow time.

 

 

3.6.4    Ideal travel time tI

 

 

Calculationsasperparagraph3.6.3.3shouldberepeatedforeachforeseengroupofpeople.  The highestresultingtraveltimeisthentakenastheidealtraveltimeforuseinperformancestandardin paragraph 3.4.

 

 

 

_______________

 

1         RefertotheRevisedrecommendationontestingoflife-savingappliances,andinparticularthetimesmeasuredin accordancewith5.17.3.3and12.6.1ofthatrecommendation(asadoptedbyresolutionMSC.81(70)).

 

*                      Dataderivedfromland-basedstairs,corridorsanddoorsincivilbuildings,andareextractedfromthepublication “ SFPEFireProtectionEngineeringHandbook,2ndeditionNFPA1995”.

4 Corrective Actions

Iftheperformancestandardsunderparagraph3.4arenotfulfilled,correctiveactionsshouldbe consideredatthedesignstagebyeithermodifyingoneormorecomponentsintheevacuationsystem (e.g.,escaperoutes,life-savingappliances,passengersload,etc.)orbymodifyingtheevacuation procedure.

 

 

5 Documentation

 

The documentation of the analysis should report the following items:

.1 the basic assumptions for the analysis;

.2 a schematic representation of the layout of the craft;


.3 position and role of the crew during the evacuation, according to the evacuation procedure;

.4 the method for the analysis, if different from these Guidelines;

.5 details of the calculation; and

.6 the resulting overall evacuation time.


Appendix

 

EXAMPLE OF APPLICATION

1 General

 

The example provides an illustration on the application of the Guidelines. Therefore it should not be viewed as a comprehensive and complete analysis nor as an indication of the data to be used. More specifically, the short description of the evacuation procedure provided in paragraph 3.3 is only an outline, for the purpose of the evacuation analysis, of the complete evacuation procedure the embarkation time and the deployment time used in paragraph 4 below are purely illustrative.

2 Craft Characteristics

The  high-speed  craft  considered  is  a  category  B  craft  with  a  total  capacity  of  800  persons (784 passengersand16crewmembers).  Asshowninfigure1,whentheordertoabandonthecraft is given,passengersaredistributedinthepublicspacesontwodecks(210ontheupperdeckand574

 

onthelowerdeck),thelowerdeckisequippedwith4MES.  Thestructuralfireprotectiontime (SPF) is 60 min.

 

 

 

 

              

Figure 1 - Sketch of the considered high-speed craft

 

 

 

 

           

 

 

 

3 Description Of The System

3.1       Identification of assembly stations

 

 

Assemblystationscoincidewiththepublicspaceswherepassengersarelocated(seated).Passengers are wearing life jackets.

 

 

3.2       Identification of embarkation stations, MES and liferafts

 

 

.1         Embarkation stations (4, one for each MES) are located at the lower deck.

 

 

.2         Each MES consists of an inflatable slide with an attached platform.

 

 

.3         Liferafts(8),135personscapacityeach,arestowedinracksonthelowerdeck,inthe proximityoftheMES.Theaggregatecapacityofliferaftsistherefore1,080persons,

 

orof810personsifoneembarkationstationisnotavailableinaccordancewiththe

 

2000 HSC Code.

 

 

.4         Two rescue boats are available for marshalling the liferafts.

 

 

3.3       Description of the evacuation procedure

 

 

.1         Whentheordertoabandonthecraftisgiven,crewmembersstartoperatingtheMES (total6crewmembers),therescueboats(1crewmemberperboat)andtodirectthe passengers(asshowninfigure1:twocrew membersontheupperdeckand6crew members on the lower deck); and all these activities progress in parallel.

 

 

.2         PHASE1:ForeachMES,theslideisinflatedandthefirstliferaftlaunched,inflated and  connected  to  the  slide's platform.  In  the  mean  time  the  first  4  groups  of passengersareformedanddirectedtothe 4 MES, each group is assisted by 1 crew member, for a total of 400 persons, as follows (see figure 2):

 

 

.2.1      164passengers,marshalledby1crewmember,movefromupperdeckthroughstair1 downtothelowerdeckandjoinwith34passengersand1crewmembercomingfrom lounge2.  Theythenmovealongthecentralaisleoflounge1(corridor2);attheend

 

ofcorridor2twogroupsareformed,eachcomposedby99 passengersand1crew member, and move to MES 3 and 4 through doors 2A and 2B respectively;

 

 

.2.2      46passengersmarshalledby1crewmembermovefromupperdeck,throughstair2, downtolowerdeck,wheretheymergewith152passengersand1crewmember;two groups are then formed, each composed by99passengersand1crewmember,and move to MES 1 and 2 respectively;

 

 

.2.3      in the meantime the remaining passengers stayinlounges1to4assistedby4crew members.

 

 

.3         PHASE2:Oncethefirstliferaftisreadyforboarding,thefirstgroupforeachMES descendstotheliferaftusingtheslideandplatform.  Whenboardingiscompleted, theliferaftisdetachedfromtheslideandfloatedawaybytherescueboat.  Inthe  meantime,thesecondliferaftislaunched,inflatedandconnectedtotheplatformand the second 4 groups of persons move to the embarkation stations.

 

 

.4         PHASE3:Oncethesecondliferaftisreadyforboarding,thesecondgroupforeach MESdescentstotheliferaftthroughtheslideandplatform.   Finally,the6crew membersoperatingtheMESboard.   Whenboardingiscompleted,theliferaftis detached fromthe slide.  The evacuation is now completed.

 

 

3.4       Identification of groups and their escape routes

 

 

Intotal8groups,eachcomposedof100persons,areconsidered.  Their(primary)escaperoutesare shown in figure 2 for the first 4 groups and in figure 3 for the second 4 groups.

 

 

 

               

 

 

                          

                                   Figure 2 -First 4 groups of persons

 

 

 

 

            

 

                                         

                          Figure 3 - Second 4 groups of persons

 

 

 

 

 

 

 

 

4 Calculation Of Te And Of Tm

4.1       Embarkation time tE

 

 

Accordingtotheevacuationprocedure,eachMESisusedby200persons,ifallfourMESare available. Based on full scale trials on craft havingsimilararrangementsandusingthesameMES andsamenumberofcrew,thetotaltimeneededtodeploy,inflateandmooringtheliferaftandto embark100personsis330s(5minand30s).Accordingly,thetotalembarkationtimeis660 s

 

(11 min).

 

 

4.2       Deployment time tM

 

 

Basedonfullscaletrialsoncrafthavingsimilararrangementsandusingthesame MES,thetotal time needed to deploy and inflate an MES is 150 s (2 min and 30 s).

 

 

5 Calculation Of Ti

5.1       Forthepurposesofthisexample,itisassumedthatcalculationshavebeencarriedoutforall the8groupsofpeopleintowhichtheevacuationisorganized,accordingtotheevacuationprocedure describedinparagraph3.3above.  Itisfurtherassumedthatthehighesttraveltimeisobtainedfor

 

thegroupofpeoplemoving(phase1)fromtheafterwardpassengerareaintheupperdeckdownto MES 3 and 4 respectively on the lower deck.

 

 

5.2       Theschematizationoftheescaperouteisshowninfigure4.  Asitmaybeseen,theelements composing the escape path are 2 doors, 2 corridors and 1 stairway.

 

 

 

 

5.3       The characteristics of the escape path's elements are as follows:

 

 

Table 5.3

 

 

 

Element

L (m)

W c   (m)

F s

S (m/s)

F c

 

(p/s)

N

 

people

Door 1

N.A.

1.4

1.3

N.A.

1.82

165

Corridor 1

14

4.2

1.3

0.67

5.46

165

Stairway 1

4.7

3.5

1.1

0.55

3.85

165

Corridor 2

14

3.0

1.3

0.67

3.90

200

Door 2A

N.A

1.4

1.3

N.A

1.82

100

Door 2B

N.A

1.4

1.3

N.A

1.82

100

 

 

Thevaluesofspecificflow(Fs)andspeed(S)aretakenfromtable3.6ofthe guidelines;thevalueof

 

calculated flow (Fc) is obtained by Fc = Fs  Wc (see paragraph 3.6.1.4 of the guidelines).

 

 

5.4       Theresultingwalkingtime(tw)andflowtime(tF),calculatedaccordingtoparagraphs3.6.1.5 and 3.6.1.6 of the guidelines are as follows:

 

 

 

 

                                                                                             Table 5.4

 

 

 

 

 

 

Element

 

L (m)

 

W c   (m)

 

N people

 

t w    (s)

 

t F   (s)

 

Door 1

 

N.A.

 

1.4

 

165

 

N.A.

 

91

 

Corridor 1

 

14

 

4.2

 

165

 

21

 

30

 

Stairway 1

 

4.7

 

3.5

 

165

 

9

 

43

 

Corridor 2

 

14

 

3.0

 

200

 

21

 

51

 

Door 2A

 

N.A

 

1.4

 

100

 

N.A

 

55

 

Door 2B

 

N.A

 

1.4

 

100

 

N.A

 

55

 

 

 

 

5.5       Theresultingtotalwalkingtimeisthesumofthewalkingtimeofeachelementintheescape pathandtotals51s.  Theflowtimeisthehighestamongalltheelementsintheescapepathand corresponds to 91 s.  Accordingly, the ideal travel time is where, tI   = 142 s.

 

 

 

 

 

 

 

Figure 4 - Sketch of the evacuation path and its schematization

 

 

6 Performance Standard

 

 

 

The calculated overall evacuation time:              tM + tE   = 150 + 660 <  SFP - 7min = 1059 s

 

3

 

 

 

 

 

 

 

                                                                        tI + tE    = 142 + 660 <  SFP - 7min = 1059 s

 

  3

 

             The requirements are fulfilled. 

Naar boven